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Abstract .  We study the quantum mechanical scattering of a particle on a two- 
dimensional non-compact Riemannian manifold of constant negative curvature em- 
bedded in a constant esternal magnetic field. The interplay between fundamental 
group operations and gauge transformations allows us to compute the scattering 
states. A closed expression for the phase shift of a plane wave entering the torus 
through its leak is shown to involve the quantized magnetic flux. 

1. Introduction 

Since the pioneering work by Hadamard in 1898 on the geodesic flow on a two- 
dimensional Riemannian manifold of constant negative curvature, the hyperbolic ge- 
ometry has inspired both mathematicians and physicists [l]. In the field of dynamical 
systems, the first result was the proof by Hedlung and Hopf that the free motion 
(geodesic) on such a coinpact, surface is ergodic (see, for instance, [2]). One now 
knows that this is a particular case of a Bernoulli system, the most chaotic type that 
can be found in Nature according to the ergodic hierarchy [3] (even if an old theorem 
due to  Hilbert (see, for instance, 141) states that such a surface cannot exist embedded 
in a three-dimensional Euclidean space). 

More recently the quantum scattering of a particle on a two-dimensional manifold 
of genus one constructed by identifying the sides of a fundamental domain of the 
hyperbolic plane associated with a subgroup of the modular group S L ( 2 , Z )  has been 
studied [5,6]. This surface is topologically a torus with an infinite horn attached to it 
(therefore a torus with a leak). Using mathematical results of the scattering theory 
for automorphic functions, one can calculate the scattering states on such a manifold. 
The physical picture is that one injects a particle through the horn and then looks at  
what emerges. The scattering states are of the form 

where C is the wavenumber a i d  the phase shift p(k) is a real function involving the 
Riemann zeta function on t8he line Re (s) = 1, defined for Re (s) > 1 by 

n = l  
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and analytically continued elsewhere (the other part of the phase being a smooth reg- 
ular function). Numerical studies of this phase shift as a function of the wavenumber k 
show that i t  exhibits a smooth ‘random-like’ behaviour. A rigorous result, the Reich- 
Voronin theorem [7], strengthens this chaotic behaviour due to  the zeta function. I t  
states that  C(s) is a universal smooth function on the critical band 3 < Re(s)  < 1 
in the sense that i t  can mimic an arbitrary analytic function as close as one wants in 
that  band. 

In the present work, we investigate the phase shift when the leaky torus is em- 
bedded in a constant magnetic field (in the sense of the hyperbolic measure). This 
paper is organized as follows. In section two, we determine the Killing vectors of 
the hyperbolic plane, which will turn out, to be useful when we introduce the gauge 
potential. In section three we briefly review the classical motion of a particle on the 
hyperbolic plane embedded in a constant magnetic field, following earlier work of one 
of us [8]. In the fourth section, we establish the link between gauge transformations 
and identifications of the sides of the fundamental domain by using the Lie derivative 
formalism. We finally calculate the scattering states in the magnetic field. The non- 
trivial topology of the manifold implies that the magnetic field must be quantized. 
(The scalar curvature R of the manifold introduces a length scale 1/m and thus a 
magnetic strength scale Bo = tllRl/e. A quantized field is a field whose strength B 
is an integer n E 2 in the unit scale Bo.)  It is shown that the new scattering states 
again take the form 

where the Riemann zeta function appears in S in the same way as in p ,  and where the 
effects of B only show up in its smooth regular part. 

2. Killing vectors and the hyperbolic plane 

It is well known that any continuous geometrical symmetry associated with a Rie- 
mannian manifold Ad can be described by the Lie derivative formalism of differential 
geometry [9]. The problem of finding the symmetry group of a Riemannian manifold 
described by its metric tensor yp,, is equivalent to that of finding the set of all inde- 
pendent Killing vector fields E, { j  = 1, ..., k} on the tangent bundle of the manifold. 
They are solutions of the partial differential equations [lo] 

where CEg is the Lie derivative of the metric tensor field y .  The integral curves are 
generated by the vector field ( through the one-parameter group of motiori 

dzp ( t )  
dt 

= <I‘  (2 ( t ) )  . 

Equation (2.1) can be rewritten by using the covariant derivative on M as 

where 
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The Killing vectors completely determine the group of continuous isometry of the 
manifold, namely the set of transformations which preserves the Riemannian length 
and the angles. In physical terms, they determine the symmetry group of a non- 
relativistic free particle of mass lying on that manifold since its Lagrangian is 

Let us derive the symmetry group of the hyperbolic plane, namely SL(2 ,  R)/Z,. In 
the model of the PoincarC upper half plane H = { z E z + iy, y > 0} , the Riemannian 
line element is given by 

L = zmgPvx 1 # P . V .  x 

dx2 + dy2 
ds2 = 

Y2 
where we have normalized t,he Gauss curvature to be -1. The Killing equations are 

( 2 . 5 )  

(2.6) 

ty 8,p = - 

= - y ( G a ~  + 26) 

ty a,[" = - a,p + 8,F" = 0 

Cz = 3 4 ~ '  - ,E') - 20s - c 

Y Y 
with the general solution 

where a ,  b and c are three arbitrary coilstants. One thus has three independent Killing 
vector fields, which can be chosen as ( u p  to an overall normalization constant) 

1 

associated through equation ( 2 . 2 )  with the translations along the x axis, namely ~ ( t )  = 
%o + t ;  

X 
E : = { ,  

associated with uniform dilatation ~ ( t )  = ezzo,  and 

associated with nonlinear rotntion z ( t )  = z o / ( l  + z,,ot). 
Since the [ form a Lie algebra, a general isometry will be generated by a linear 

combination alEl + + a3E3 where the Q, are real numbers, leading through 
(2.2) to the well known compact form of a fractional linear transformation (since the 
overall normalization of [ can be absorbed in a redefinition of time, they are only 
three independent parameters) 

where 

(2.10) 

(2.11a) 

(2.1 lb) 

(2.1 I C )  

a ( t )  = cos11 (:) + 

b ( t )  = - sinh 

c ( t )  = -sin11 

d ( t )  = cosh ($) - 

sin11 ($) 
(+) 
(a) 

'La 1 

203 

c7 

U 

sinh (T) (2.1 Id) 
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with U 
homomorphism between the algebra of the 2 x 2 matrices 

d m  and the normaliza.tion ad - bc E 1 for all t .  There is an 

(2.12) 

normalized by det y = 1, a n d  t,hese fractional linear transformations. The Killing vec- 
tors of the hyperbolic plane will be useful when we will discuss gauge transformations 
on the leaky torus. 

3. Classical dynamics on the hyperbolic plane in a constant magnetic field 

The free motion on the hyperbolic plane takes place on the geodesics of this manifold, 
solutions of the dynamical equations 

dz” dxp 
dt2 dt dt = o  d2xp - -b rvy----  

These are half circles whose centre a.re on the real axis y = 0, including vertical half 
straight lines as degenera.te cases. The introduction of a vector potential A,  with 
F,,, = d[,A,1 gives the new dynaniica.1 equations of motion 

where m is the mass of the pa.rt.icle a.nd e its charge. A constant magnetic field over 
the manifold (in the sense of the metric) is a field whose strength tensor covariant 
derivative vanishes everywhere, i.e. 

Equivalently in two space dimensions, this means that the 2-form B = dA is propor- 
tional to  the volume form 

dx A dy 
Y2 . (3.4) 

In order to describe the trajectories in the presence of the magnetic field, we introduce 
the tangent vector to the geodesic parametrized by the geodesic length s 

dx, 
f fp  = - 

ds (3.5) 

and the covariant derivative along the geodesic by 

The covariant Serret-Frenet equations in two dimensions take the form 
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where tc is the intrinsic curva.ture of the trajectory and LYP and form the local 
orthonormal Serret-benet basis. The dynamical equations (3.2) may be rewritten as 

ds 2 d2s  ds  
-aP dt2 + K; (x) P’ = 2 (x) FP,,aY. 

By multiplying this equat,ion by a,, and taking into account the antisymmetry of 
the field strength tensor and orthonormality of the basis vectors, one finds that the 
trajectory is spanned at  a constant, speed vo E ds/dt. Equation (3.8) then takes the 
form 

(3.9) 
e 
m 

t c v o p  = - P , a V .  

Operating with V, on (3.9) and then multiplying by PP gives 

(3.10) 

Thus, if the field strength tensor has a vanishing covariant derivative, the intrinsic 
curvature of the trajectory ri is a constmt. (For a three-dimensional manifold, similar 
arguments would ha.ve led t80 a curve which, moreover, possesses constant torsion. See 
also [ll].) The local basis thus satisfies the constraint 

(3.11) 

and, as shown in [8], the trajectories on the Poincark upper half plane are still circles 
(in the usual sense since the hyperbolic space is conformal), but their centres do not 
automatically lie on the horizontal axis, depending on the strength of the magnetic 
field. For a value of the field greater than some critical value (depending on the 
energy), the particle gets trapped on closed orbits, being otherwise scattered on a half 
circle. It must be noticed that this behaviour is very different from the flat space 
case, where scattering traject,ories disappear for arbitrary small positive value of the 
magnetic field. 

4. Group operations of the leaky torus and gauge transformations 

The leaky torus is constructed by the identification of the sides of a fundamental 
domain D of the hyperbolic plane in a way analogous to  the flat space case [12]. The 
boundaries of the domain D in the Poinca.r$. upper half plane are the four geodesics 

x = -1 O < y < c O  

x = $1 o < y < c o  

(x + f ) 2  + y2 = $ 

( x -  % ) 2 + y 2 =  f 

- 1 < x < o  

0 < x < 1 

and identifications are made wit,h the two fundamental operations A and B 

(4 . la)  

(4.lb) 

( 4 . 1 ~ )  

(4 . ld)  

A=(:  ;) B = (  -1 -1) 2 
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A maps the boundary ( 4 . 1 ~ )  into (4.ld) and B maps (4.1~) into (4.lb) (see figure 1). 
The hyperbolic plane is tessellated by a.n infinite number of copies of the fundamental 
domain D generated by the application on D of some unique word constructed from 
A ,  B,A" and B-' as long as the 'single/return' operations (namely AA-' ,  A - l A ,  
BB-' ,  B - I B )  are omitted. The set of all these transformations forms a discrete 
group I', a subgroup of the modular group S L ( 2 , Z )  generated by A and B .  Since the 
domain D is non-compact, identifications of its edges leaves a unique point infinitely 
far removed and the non-compact (but of finite area) manifold has thus the topology 
of a torus with an infinitely thin horn attached to it. This point at infinity is the only 
cusp of I' whose stabilizer ra, is generated by the parabolic element A' I= B-'A-'BA. 

-1  0 
X 

Figure 1. The fundamental domain associ- 
ated with the subgroup r of the modular group 
S L ( 2 , Z )  on the Poincart upper half plane and 
the action of the generators A and B leading to 
the leaky torus by the gluing of the boundaries. 

For a covariant constant magnetic field B ,  a particular gauge choice leads to  

'4, = 0. 
B A,  = -- 
Y (4.3) 

Now the gauge potential has to match up to a gauge transformation when one identifies 
the sides of D by the mea.n of the group generators A and B .  These transformations are 
some combinations of the three independent motions associated with Killing vectors of 
the hyperbolic plane, thus it is sufficient to restrict the investigation to these motions. 
One can show that 

for j = 1 and 2. On the cont,rary. for nonlinea,r rotations, one finds that 

(4.4) 

(4.5) 

This is a weak symmetry condition [13] since the gauge potential is only turned by a 
gauge transformation when oiie follows the curve generated by E 3 .  Howwer, one wants 
an explicit matching of the gauge potential through the identifications, namely a gauge 
transformation such that the potential at the transformed point takes the value of the 
former one at  the initial point. Writing this new potential as A: = .A ,  - apA,  the 
equation (LeA') f i  = 0 where E alEl + a2E2 + a3F3 implies that the local rate of 
change of A is L,A = a s p .  For a finite transformation y generated by < in the finite 
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time t , the point z is transformed into yz. Taking z as a reference point by setting 
A(%) 5 0 , the value of A at the point yz is given by 

where (2.2) has been used. Thus 

where 

( 4 4  Y 
y(r) = lc(.)z + d(r) \? .  

The integral is carried out with the help of ( 2 . 1 1 ~ )  and (2 ,114 ,  leading to  

A(yz)  = 2B t8an-' (4.9) 

5 .  Scattering states 

The calculation of the scattering states begins with the construction of the Hamil- 
tonian. The modified La.place.-Belt.ra.mi operator acting on scalar functions is given 
by 

- 
A E -gpy(V, - ieA,)(B, - ieA,) 

= -A + 2ieA"d, + ie(V,Ap) + eZApA,  

where A is the ordinary Lapla.ce-Beltra.mi operator. The gauge choice (4.3) leads to  
the time-independent Schrodinger equation 

A particular incident plane wa,ve coining from y = c13 and going down to y = 0 

is a solution of the free sca,t.tering on t,he leaky torus and is also an eigenfunction of the 
Schrodinger equation (5 .2 ) ,  hut, the energy X and the wavenumber IC are now related 
by 

X = " [ 1 . k 3 + ( $ ) ? ] .  2m 4 (5.4) 
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We have seen that under t4he operation y E I?, z c+ yz, the potential just changes by 
a pure gauge. It follows that the resulting wavefunction has to be gauge transformed 
accordingly, namely 

One can verify directly that the latter expression is indeed an eigenfunction of the 
Hamiltonian with the same energy. 

The full wavefunction is t,Iien obtained by summing over all the group elements 
modulo the right multiplications by IC since this generates translations of six units 
along the z axis, namely Iiflyz = yz  + Bn, leaving c and d unaffected. So one sums 
over the right cosets r,\r of r with respect to IC in order to avoid infinite repetition 
and gets the genemlized aut,omorphic function [14] 

Let us now show that, the magnetic field has to be quantized, just as it is on a flat 
torus. For this, we consider the wavefunction at  the four corners of the fundamental 
domain. Since these points are the same through identifications of the edges, the 
wavefunction must take the same value up to a gauge transformation at each of these. 
One thus obtains 

A ( - l , + c o )  = (+1,0)  3 +(+1,0) = N- 1, +m> ( 5 . 7 u )  

B ( + I , + ~ )  = ( - 1 ~ 0 )  + $(-I,o) = S ( +  1, +m) ( 5 . 7 c )  

A ( - l ,  0) = (0,O) + $( 0,O) = $(-I* 0) (5 .7b)  

B(+l,O) = (0,O) + q ( 0 , O )  = $ ( + l , O ) .  ( 5 . 7 d )  

Now $(z,y) is independent of a: as y goes to infinity and so $(-I, +m) = $(+1, +CO). 

(Intuitively, the horizontal hyperbolic measure of the domain goes to zero as y goes 
to infinity so that the band becomes infinitely narrow and thus the problem one 
dimensional.) It then follows that 

( 5 . 8 ~ )  

( 5 . 8 b )  

which leads to the quantization of the magnetic field strength, namely B = nh/e 
where n E 2. 

In order to evaluate the sum over the cosets, we just follow the calculation made 
in [5] according to the general pattern of [ 1 4 , 1 5 ] .  One first takes advantage of the 
periodicity of \ k k ( z )  in 2 by performing a Fourier expansion in this variable. To 
visualize the inva.riance under right multiplications by Ii' , it is convenient to redesign 
the fundamental domain D as a juxtapositioii of six modular domains [5] lying in the 
band z E [-!,-ti]. This gives 

711 E 
( 5 . 9 u )  
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where 

(5.9b) 

The next step is to transform t'he sum over the cosets of I' into a sum over prime 
numbers (the normalizat*ion condition on the coefficients of a transformation y tells 
that c and d are relatively prime, which is denoted by ( c , d )  = l ) ,  yielding 

eB/R 
e-?ninio/6 

(5.10) 

For the zero Fourier coefficient, one finds with the help of [16], 

e B / h  c i  + d t o o  

where r(z) is the Euler funct,ion such t1ia.t 

1 t o o  

x c  c - 
c = l  O < d < c  

( c , d ) = l  

Using the number theory theorem [17] 

1 C (-2ik) t o o  

cc-= c = l  O<d<c ( ( 1  - 2ik) 
( c , d ) = l  

(5.12) 

(5.13) 

and some functional relations between the Euler function and the Riemann zeta func- 
tion [16], one fina.lly finds 

(5.14) 



3708 M Antoine, A Conitet a n d  S Ouvry 

On the other hand, the spa.ci. dependence of the non-zero Fourier coefficients is 
given by 

2amy 
W - e B / h , i k  (3) m > O  

2nmy 
W+eB/h,ik (-3) < 

ak ,n , (Y)  

(5.15a) 

(5.15b) 

where W,,@(z) is the Whit,ta,ker function [18] whose asymptotic expansion is 

W , , ~ ( Z )  = ~ ( 1  + 0(1/z)) 121 + +w. (5.16) 

Thus the non-zero Fourier coefficients vanish exponentially as y + $00 and therefore 
do not contribute to the scattering. In other words, the asymptotic scattering states 
are given by the %-wave’ around the horn. We finally end up with 

(5.17) 

for the scattering states in  the quantized constant magnetic field. 
coefficient r E el6 is a pure phase 

lrI2 = 

The reflection 

( r  ( $  - ik) r ( 4  + ik) l 2  
r (3 - i k  + eB/h )  r (4 - iIc - e B / h )  r (3 + ik  + e B / h )  r (3 + ik - eB/ti) 

= 1  sin‘(neB/h) 
cosh2( nk) 

= 1-  (5.18) 

for a quantized magnetic field. 

6. Conclusion 

The final result 

e i6(k ,n)  = ,,.-?I, r ( 4 - ik) r (3 + ik) c (1 + 2ik) 
r ( ; - i k + ~ l ) r ( $ - i k - n )  C(1-2ik) 

leads to  a phase shift 6 ( k , n )  that  only depends of the magnetic field ( B  = &/e) 
through the function. The chaotic properties of the phase shift discussed in detail 
in [5] are thus not affected by the presence of the field (only the non-fluctuating part 
of the phase shift is altered by the field). It4 is interesting to  point out that  the 
scattering amplitude displays complex poles (in the complex energy plane) associated 
with the non-trivial zeros of the ( function and also poles on the real axis that  only 
occur when the magnetic field is present. The latter are associated with the n bound 
states that  are allowed in the presence of a quantized magnetic flux [8]. I t  is also 
interesting to  discuss the scattering problem on the whole upper-half plane. In this 
case, the scattering states with a sharp momentum p along z read [8] (up to  an overall 
normalization factor) 
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In contrast with ( 5 . 9 ~ ) ~  p is not quantized in the present case. These states decay 
exponentially for y + +CO and display, at infinity, plane-wave behaviour. Indeed in 
the vicinity of the y = 0 axis 

describes for fixed p the superposition of an incoming and an outgoing plane wave 
along the y axis. The occurrence of such quasi-free states can be understood on a 
physical basis since, in this asymptotic region, the curvature effect largely dominates 
over the magnetic field. The corresponding phase shift reads 

to be compared with our final result for the phase shift on the hyperbolic torus (rewrit- 
ten in a sligthly different form) 

ei6(k ,n)  - -2ik I?($ + ik + n )  ((1 + 2ik) - (-1)n 7r I?( $ - ik + n)  ((1 - 2%) ' 

The dependence on the magnetic field is for both topologies given by a ratio of two 
gamma functions, although the wavefunctions are very different. A physical explana- 
tion of this striking similarity is still lacking. 
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